@ CM.com

Integration
Manual

Order API 1.3

Version 1.0

Content

1. N d oY [T ol { Lo o FESU OO RO O OO E SO SU SRRSO
2. INterface........ccoeveiicicicee e
2.1. Communication through SOAP
2.2. TE ST S S M ettt bbb e et e st e bt et b e eb e e st e abeetb e b e oAt e s b e b e eheesbe et e e Rt e beehbe b e eab e b e neenbeereeneeaeeraens 5
2.3. PrOAUCTION SYSTRM Lottt ettt s e s et et e b e st et et et et e st e s e eb e beeb e b et estasete st esbeneeraens 5
2.4. DefiNITiONS @CIOSS SYSTOIMIS .ottt et bt b et ettt et s et eb e beeb e b et et s ete st e be b esseseene e 6
2.5. P Y MENT SCENMAITO oottt ettt a e bttt e b b et e b s e tb e ebseasesbeeb b e b eerseateebseaeesbeeraesbeebaesseereeree 6
2.5.1. (@] aT=N ot Te T= I ol aT=T o1 2 Ce U ORI 6
252, WEDAINECE SCONAIIO c.uiiiiii ettt ettt e e e et e e ta e e teeeebeeeabeeeaaeeetaeeeteeenteesaseesaneenns 7
2.6. Order API operations
2.6.1. LOL T) APPSR
26.2. Start..eeeeen.
2.6.3. Proceed
284, CANCEL ettt b et b et e ehe e beeabeate et e eraeahaeabeeateeheesbeenbeeteenbeerbeereenbeenaenrean
2.6.5. Capture
2.6.8. RETUNG .ottt et e e et e e st e e s te e et e e e beesabeesabe e taeesbeeeabeearbeeaabe e teeebeeenbaeenbeenaneene 8
2.8.7. SEALUS 1ottt e e b e et e ste e beeaa e he et e eate bt eabeeab e beenbeeabesteenbeeraeeteenbeenaenraan 8
2.6.8. EXEENAEA SEATUS .eviieeieeeeeee ettt ettt e e e s b e et e et e e et e e e b e e eab e e taeebeeeabeeeaaeesaneenns 8
3. o LY 1T L A o T o Yot =1 OO ST PR 9
3.1. USING the ONe Page ChECKOUL. ...ttt e r e sb e s e sttt es bbb e 9
3.2. USING WEIDAITECT cviiviiiiiieeteet ettt vttt ettt et bt r e eb e b s e s ebsebe st s b beer e b e ssesbessebseteetenserbeneereereseenne 10
4. Order API calls..........
4.1. createRequest
4.1.1. LR LU= OO OSSPSR
4.2, CreateRequest ALerPay & KIGINA ittt er e et ettt e s e ereereerebe s erseveeren 14
4.2.1. R B LS E ittt b et e e h et e b bt ae b e b et Rt b ab e heerbe et e st eateeb e ae e beerbenteereerteerean 14
4.2.2. RIS o7 8 KT T OSSR PTPRTTRPN 15
4.3. StartReqUEST WItNOUL @ TOKEN oo sttt ettt eb b s e 16
4.3.1. Request.....cccvieciiieciee
4.3.2. Response
4.4, STArtREQUEST WIth @ TOKEN (.ot b bbb se et b et se bbb e 19
4.4.1. [T LU= OO P PRSP 19
4.5, PIrOCEEUREUUESE ...ttt ettt ettt r e et e te ettt ae v et e b esbessebsebe et eateae et et e ebesbessereesstessensenseteaens 19
4.5.1. IR Lo [N O T SO U SO T SO U U O RO SUPUUPUPPUPRPIORO
4.5.2. IR IETS] o7 8 11T SO PO PPURPUPRUPRRIR
4.6. cancelRequest
4.6.1. R B OUES T ettt bttt et h et b ettt h e ab e he et b et e reeat e b ear e beer b et eereerbeeren
A.8.2. RESPDONS . ittt ettt ettt r e et e e r et bbb e b be et b e b eae et eh e Re e be et b e b e At e s beehae b e ebeensebeeht et e aeeraeres
4.7. o= LU =] d=To T T=TS] AP OO U SRR PUTRRRRN 23
4.7.1. L= U= USSR 23
A.7.2. RESPDONSE ittt ettt ettt ettt ettt h et b a1 eh e At b b e et be et b e b e aeerbe e b e et e er e et ebeetb et e aeerberes 23
4.8. FEFUNTREQUEST 1ottt ettt ebe ettt et be b e b e b s essebes b esses b beer e b e sbesbessetsebeste st enteneeraereeneene 24
4.8.1. LT [U] USSR USSP
4.8.2. LRy 0T 8 57 =TSP U PSPPSR
4.9, statusRequest
4.91. R B OUEST ittt a et e ettt ea bt ae b et r et b eb e ab e beeh bt e bt eat e b e eae e beerae b areenteres
4.9.2. L= o T 8 KT TSSOSO PP TP IPPRRPIN
4.10. SEAtUSEXTENAEAREQUEST ...t b bbb e ete bbb e b et sberbe e esesae st es b essns 28
A0, REQUEST ottt sttt eb b1ttt he st s bRtttk bR bR e b e bt e s bRttt b R b e R b e b b esbeteetebe b erbene 28
A10.2. RESPDONSE i ctiitiiteiiie ettt ettt ete et e et e s e e b e saea1be st e e st asbeeb s e b e beeabeeb s Re et e b e e Rs e be et b e b e ae e s be b e et e ebeenseabeeta et e aeerteres 28
41. Changes iN the OFAEE APl ..ottt ettt s es e b b et et e ae et et e b eraeseeveere st assessareas 30
41M.1. Request......

41M.2. Response

Page 2 of 37
@ CM.com Version 1.0 - Public

4.12. EXAmMPIe OF @n URAAEE UF| .ottt ettt ettt ettt b et ensnin 32

4.13. Determining whether an Order iS Paid ... eb st 32
4030, A CAICUIGTEA AECISION .eiiiieiceeee ettt ettt e et e e et e e sab e e taeesseeesbeeseseesaseessneenseeas 32
4.13.2. Direct Payment: Monitor <totalAcquirerApproved> equals <totalRegistered>.................... 34
413.3. Delayed Payment: Monitor <totalShopperPending> and <totalAcquirerPending> 35
413.4. Safest route: Monitor <TotalCaptured> equals <totalRegistered>.cccccovvvvviviieiiiceeeeieene 35

5. BacCKOffiCe CONFIGUIATION . ..o e e bae e e e e e e s bbaase e s e e s ssaaasesssssssssbasaasesns 36

Page 3 of 37
@ CM.com Version 1.0 - Public

1. Introduction

The purpose of this document is to describe the technical interface of the Payment system and its
minimum required data set. Based on the information in this document System Integrators and Web
developers will be able to successfully integrate the Payment services into their systems.

In order to process a payment CM offers an Application Programming Interface (API) to interact with
a Merchant’s system. The next chapters describe the interface and its commands.

Page 4 of 37
@ CM.com Version 1.0 - Public

2. Interface

2.1. Communication through SOAP

The Order APl communicates solely using a SOAP interface over HTTP. SOAP allows the Order API to
make a strong definition of the required input and output for its different operations. This definition is
described in a WSDL document, which can easily be exchanged with the Merchant, who can use this
to implement the required SOAP functionality. For more information on SOAP, please refer to W3C's
official documentation on their website: http://www.w3.org/.

2.2. TEST system

CM offers a separate payment system for integration and test purposes. The test system behaves like
the production system but will not communicate transactions with acquiring parties. This way a
system integrator or web developer can integrate the Payment services and optimize the payment
process without financial impact.

SOAP endpoint:

https.//test.docdatapayments.com/ps/services/paymentservice/1_3

WSDL:

https://test.docdatapayments.com/ps/services/paymentservice/1_3?wsdl

WSDL viewer:

https://test.docdatapayments.com/ps/orderapi-1_3.wsdl

XSD:

https://test.docdatapayments.com/ps/services/paymentservice/1_3?xsd=1

XSD type definition:

https://test.docdatapayments.com/ps/services/paymentservice/1_3?xsd=2

The required elements and data fields as described in the WSDL are explained in the XSD. Each
element where minOccurs="1" indicates that the information is MANDATORY for that element in order
to successfully process a payment order. The definition types are described in the XSD type definition
source.

For consultants or process owners the WSDL formatted as a document may be a better source to
read about the specification. This document can be presented using following link:

http://services.w3.org/xslt?xslfile=http://tomi.vanek.sk/xml/wsdl-
viewer.xsl&xmlfile=https://test.docdatapayments.com/ps/services/paymentservice/1_3?wsdl&transfor
m=Submit

2.3. Production system

Once the system integrator or web developer has finished the integration and test process, the web
shop or web application should be linked to the CM production system in order to process live
payments.

SOAP endpoint:

https://secure.docdatapayments.com/ps/services/paymentservice/1_3

Page 5 of 37
@ CM.com Version 1.0 - Public

http://www.w3.org/
https://test.docdatapayments.com/ps/services/paymentservice/1_3
https://test.docdatapayments.com/ps/services/paymentservice/1_3?wsdl
https://test.docdatapayments.com/ps/orderapi-1_3.wsdl
https://test.docdatapayments.com/ps/services/paymentservice/1_3?xsd=1
https://test.docdatapayments.com/ps/services/paymentservice/1_3?xsd=2
https://test.docdatapayments.com/ps/services/paymentservice/1_3?xsd=2
http://services.w3.org/xslt?xslfile=http://tomi.vanek.sk/xml/wsdl-viewer.xsl&xmlfile=https://test.docdatapayments.com/ps/services/paymentservice/1_3?wsdl&transform=Submit
http://services.w3.org/xslt?xslfile=http://tomi.vanek.sk/xml/wsdl-viewer.xsl&xmlfile=https://test.docdatapayments.com/ps/services/paymentservice/1_3?wsdl&transform=Submit
http://services.w3.org/xslt?xslfile=http://tomi.vanek.sk/xml/wsdl-viewer.xsl&xmlfile=https://test.docdatapayments.com/ps/services/paymentservice/1_3?wsdl&transform=Submit
https://secure.docdatapayments.com/ps/services/paymentservice/1_3

WSDL:

https://secure.docdatapayments.com/ps/services/paymentservice/1_3?wsdl

WSDL viewer:

https://secure.docdatapayments.com/ps/orderapi-1_3.wsdl

XSD:

https://secure.docdatapayments.com/ps/services/paymentservice/13?xsd=1

XSD type definition:

https://secure.docdatapayments.com/ps/services/paymentservice/1_3?xsd=2

2.4. Definitions across systems

Merchant Order reference

Docdata system Unique transactionKey

Docdata system PaymentOrder

Payment
(-attempt)

Docdata system PaymentID (PID)

Figure 1: Relation between an Order and Payment(-attempt)s

Typically the Merchant system refers to an order using a unique order reference. This order reference
is sent to the Payment system to be able to cross link the order in the web shop to its payments in the
Payment system. Once the Payment system has accepted the instruction to process a payment from
the web shop, an ‘Order’ in the Payment system is created. This ‘Order’ is identified by a unique
transaction key which represents the cluster of services and actions.

The next step in the Payment system is to create a PaymentOrder as identifier of the payment service
requested. Then each payment (-attempt) is registered to this PaymentOrder by a unique Payment ID
(PID).

2.5. Payment scenario

2.5.1. One Page checkout

CM offers a web based payment menu to which a shopper can be redirected to complete a payment.
This payment menu is called the One Page Checkout (OPC) or checkout page and is hosted by CM.

Page 6 of 37
@ CM.com Version 1.0 - Public

https://secure.docdatapayments.com/ps/services/paymentservice/1_3?wsdl
https://secure.docdatapayments.com/ps/orderapi-1_3.wsdl
https://secure.docdatapayments.com/ps/services/paymentservice/1_3?xsd=1
https://secure.docdatapayments.com/ps/services/paymentservice/1_3?xsd=2

The typical process flow for this scenario is:

1. Inthe web shop a shopper collects products and moves to the checkout page in order to pay.

2. The web shop initiates the creation of an Order in the Payments system. The Payment system
returns a digital key which is the unique reference for the Order and its subseguent payment(-
attempt)s processed in the Payment system.

3. Using the unique key the web shop redirects the shopper to the One Page Checkout. The
shopper may then choose any of the (pre-) configured payment methods to pay the total
order amount.

4. Once the shopper has completed the payment the shopper is redirected back to the web
shop landing page.

5. The web shop then checks the final status of the Order to confirm if the payment indeed is
successfully authorized and/or captured.

6. The web shop then processes the order logistics so the Merchant can ship the products to the
shopper.

Note

e Instep 3 the shopper may cancel the payment after which he is redirected back to the web
shop.

2.5.2. Webdirect scenario

Some payment methods do not require direct interaction with the shopper. For example a shopper
may wire the money to a CM bank account by means of a bank transfer. The bank account details can
be provided from the web shop itself hence it is not required to forward the shopper to the One Page
Checkout to complete a payment.

The typical process flow in this scenario is:

1. In the web shop a shopper collects a product and moves to the checkout page in order to
pay.

2. The shopper provides the necessary details for shipment and invoicing for the products
ordered.

3. The web shop provides the instructions to the shopper to which bank account the money is to
be wired. The shopper may then be redirected back to the product catalogue in the web shop.

4. The web shop initiates the creation of an Order in the Payment system.

5. Thepayment system returns a digital key which is the unique reference for the Order and its
subseguent payment(-attempt)s as processed in the Payment system.

6. Using the unique key the web shop now provides the necessary details to the Payment system
in order for CM to further process the payment.

Note

e The Webdirect scenario is limited to a specific set of payment methods. For more information
how to use Webdirect see the chapter 4.3.

2.6. Order API operations

This chapter describes the different operations available in the Order API and their basic use.

2.6.1. Create

The first step in a payment process is to create an Order (transaction) in the Payment system. This is
achieved by initiating a CREATE request. Once the transaction is started, payment actions can be
started; either by the shopper via the One Page Checkout or through the Order API in case of a
Webdirect payment scenario.

Page 7 of 37
@ CM.com Version 1.0 - Public

2.6.2. Start
In the scenario where the One Page Checkout is not used, i.e. in a Webdirect scenario, the START
operation is used for starting a payment order by the Merchant. The Payment system returns a
payment ID (PID) to uniquely identify the payment order.

2.6.3. Proceed

In the scenario where the One Page Checkout is not used, i.e. in a Webdirect scenario, the PROCEED
operation is used to finish the authorisation after the merchant returns from the acquirer. For example
this is the case when the merchant redirected the shopper to 3D secure. The response from 3D secure
needs to be sent to CM to finalize the authorisation.

2.6.4. Cancel

The CANCEL operation is used for cancelling a previously created Payment Order.

2.6.5. Capture
Once a Payment(-attempt) is successfully AUTHORIZED the payment is to be CAPTURED to confirm
the acquirer has accepted the payment for processing.
2.6.6. Refund
The REFUND operation is used to perform one or more refunds on payments which have been
captured successfully.
2.6.7. Status
The STATUS request is used to query the status of an Order and its payments, captures or refunds in
the Payment system. Refer to see chapter 4.13 to determine whether an order is considered “paid”.
2.6.8. Extended Status

The EXTENDED STATUS request is used to retrieve additional status information of an Order and its
payments, captures or refunds from the Payment system.

Page 8 of 37
@ CM.com Version 1.0 - Public

3. Payment process

3.1. Using the One Page Checkout

The workflow as shown in Figure 2 depicts the different steps in which an Order and its payments are
processed using the Order API interface and the One Page Checkout.

Payment flow via One Page Checkout

Shopper Web menu (OPC) Order API Payment service

1. Proceed to checkout

2. CREATE request

Order key :l

Redirect information

3. Make payment

4. Process payment
Payment processed

Redirect to webshop

5. Order status change notification

6. STATUS request

Status report

7. Return to webshop
T

Confirm status of order being processed

8. CAPTURE request

Process capture

Capture processed

CAPTURE response
9. Order status change notification

10. STATUS request

Status report

Order API

Payment service

Shopper Web menu (OPC)

Figure 2: Process flow based on the One Page Checkout scenario

Step 1: The shopper has finished shopping and continues to check out to pay for the order.

Step 2: The merchant first creates an Order in the Payment system using the Order API CREATE
request. The Order API returns a unique Order key.

Step 3: The shopper completes his/her payment in the One Page Checkout.
Step 4: The One Page checkout requests the Payment system to process the payment.

Step 5: By means of an asynchronous Status Update call the Payment system notifies the merchant
when the status of an Order has been updated.

Page 9 of 37
@ CM.com Version 1.0 - Public

Step 6: Using the digital key as provided in the response of the CREATE request the merchant checks
the status of the Order and whether the payment has been authorized successfully. This adds up to a
confidence level to decide whether or not to ship the products.

Step 7: The shopper is redirected back to the Merchant's web shop via the web menu'’s redirect URL.
The landing page of the web shop can be used to display a confirmation of the order to the shopper.

Step 8: When the Merchant is ready to ship the products, in some cases a manual capture is required
by the Merchant by means of a CAPTURE request.

Step 9: When the capture has been successfully processed, the Payment system notifies the merchant
of a change in the Order by submitting an asynchronous Status Update call.

Step 10: The merchant then again checks the status of the Order to confirm whether or not to ship the
products to the shopper. This information is also used to synchronize the web shop administration.

Note

e As depicted in step 5 and step 9 asynchronous Status Update calls may be sent shortly after
one another. The web shop should ensure correct handling of numerous asynchronous Status
Update calls.

e Some direct payment methods automatically capture a payment immediately after
authorization. Please refer to the payment method documentation for more information how
to ensure a solid payment process.

3.2. Using Webdirect

The workflow as shown in Figure 3 depict the different steps in which an Order and its payment(-

attempt)s are processed in a Webdirect scenario.
Payment service

Payment flow via webdirect

Shop per Merchant Order API

1. Checkout and start pa
2. CREATE reguest
Order key
3. START request

4. Process payment

Payment processed

Payment ID

3. STATUS request

Confirm status of order being processed

<

7. Order status change notification

CAPTURE response

8. STATUS request

Status report

Shopper Merchant Order API

Figure 3: Process flow Webdirect scenario

Page 10 of 37
@ CM.com Version 1.0 - Public

Payment service

Step 1: The Shopper has finished shopping and moves to the checkout page of the web shop to start
the payment.

Step 2: The merchant initiates an Order in the Payment system by means of a CREATE request.

Step 3: Using the unique digital key as provided in the response of the CREATE request the merchant
then initiates the creation of a Payment Order using the START request. The Payment system will
return a payment ID as a unique reference for each payment (-attempt).

Step 4: The order API requests the Payment system to process the payment.

Step 5: Using the digital key as provided in the response of the CREATE request the merchant checks
the status of the Order and whether the payment has been authorized successfully. This adds up to a
confidence level to decide whether or not to ship the products.

Step 6. When the Merchant is ready to ship the products or services, the request to CAPTURE the
payment order is initiated by the web shop.

Step 7: By means of an asynchronous Status Update call the Payment system notifies the merchant
when the status of an Order has changed.

Step 8: The merchant then checks the status of the Order to confirm whether or not to ship the
products to the shopper. This information is also to be used to synchronize the web shop
administration.

Note:

Please refer to the payment method documentation for more specific information on how to ensure a
solid payment process.

Page 11 of 37
@ CM.com Version 1.0 - Public

4. Order API calls

This chapter outlines the different SOAP requests and its minimum required parameters as defined in
the Order API. For each API call an example request is provided including the response.

4.1. createRequest

The createRequest operation is the first step in the payment service workflow and will create an Order
in the Payment system. In response of the createRequest a digital Key is returned which is the unique

reference to the Order and its payment(-attempt)s.

41.1. Request

The CREATE request should contain all minimum required information which is mandatory to
successfully process a payment. If multiple payment methods are offered, please make sure that all
required information for any of the offered payment methods is already included in the CREATE

request.

Request

<createRequest
xmlns="http://www.docdatapayments.com/services/paymentservice/1l
~3/" version="1.3">

<merchant name="webshopXYZ" password="p5V4MzZqgs"/>
<merchantOrderReference>1211141202</merchantOrderReference>

<paymentPreferences>
<profile>profile-name</profile>
<numberOfDaysToPay>14</numberOfDaysToPay>
<exhortation>
<periodl numberOfDays="7" profile="unknown"/>
<period2 numberOfDays="7"/>
</exhortation>
<terminalIld>terminal 1</terminalId>
</paymentPreferences>

<menuPreferences>
<css id="1"/>
</menuPreferences>

CM.com

Explanation and
requirements (See XSD and

XSD type definition)

For each call this section identifies the
Merchant and the order reference.

1.The element <merchant> provides the
Merchant credentials as setup in the
Merchant Back Office.

2.The element
<merchantOrderReference> refers to
the Merchant's internal unique reference
for this order and is used by CM for
informational purposes in the Merchant
Back Office.

This element specifies the settings to use
for all payments which are going to be
made on this order.

1.In element <profile> provide the
payment profile as configured in the
Merchant Back Office that is used to
group the payment methods that are
offered to pay for this order.

2.The element <numberOfDaysToPay>
indicates the number of days within the
shopper is expected to pay. In case this
date is due the payment order is
considered expired.

3.In element <exhortation> provide the
expected number of days after which a
reminder e-mail is to be sent. This email
will be sent from the payment system
using the email account as provided in
the element <email> .

4. The element <terminallD> is the ID of
the terminal that is going to be used
when using the payment method
Point2Pay.

Preferences to be used for the web
menu. Provide the style sheet used to
format the web menu.

Page 12 of 37
Version 1.0 - Public

<shopper id="client id">
<name>
<first>Billy</first>
<middle>van</middle>
<last>Borstel</last>
</name>
<email>billy.borstel@cmpayments.com</email>
<language code="nl"/>
<gender>M</gender>
</shopper>

<totalGrossAmount currency="EUR">3330</totalGrossAmount>

<billTo>

<name>
<first>John</first>
<last>Doe</last>

</name>

<address>
<street>Street</street>
<houseNumber>124</houseNumber>
<postalCode>3970AC</postalCode>

<city>Utrecht</city>
<country code="NL"/>
</address>
</billTo>

<description>default transaction</description>
<receiptText>Thanks for your purchase</receiptText>

<invoice>
<shipTo>
<name>
<first>Billy</first>
<last>Borstel</last>
</name>
<address>
<street>Street</street>
<houseNumber>124</houseNumber>
<postalCode>3970AC</postalCode>

<city>Utrecht</city>
<country code="NL"/>
</address>
</shipTo>

<additionalDescription>Add.
Description</additionalDescription>
</invoice>

CM.com

In case the css id is not provided the
system will use style sheet 1 (<css
id="1"/>) as configured in the account
settings.

This element contains the information
about the shopper.

1.Providing a valid email address is a
requirement in order to successfully
Process payments.

2. Provide the preferred language to use
for the web menu according ISO 639-
1:22002 Part 1: Alpha-2 Language Codes
(lowercase).

3. Provide the gender of the shopper
according the information in XSD2:

M = Male
F = Female
U = Undefined

This element sets the total gross amount
for the shopper to pay.

1.Provide the currency of the amount to
pay as an integer in the smallest
available unit.

The element <billTo> provides
information about the billing destination.

Element <postalCode> can only contain
a combination of letters and numbers.

Description / Additional description - A
description for this order.

The message which is provided in the
element <receiptText> will also be
submitted to the acquirer to use on the
bank statements.

The element <shipTo> provides the
name and address to use for shipping. As
part of the <invoice> element this
information is mandatory for payment
methods which require the invoice
information as part of a risk check
process. i.e. AfterPay and Klarna Invoice.

In case the description in the
<description> element is insufficient, for
the invoice an additional description may
be added in the element
<additionalDescription> for
informational purposes.

Page 13 of 37
Version 1.0 - Public

<integrationInfo>
<webshopPlugin>Webshop plugin</webshopPlugin>
<webshopPluginVersion>Webshop plugin

version</webshopPluginVersion>
<integratorName>Integrator name</integratorName>
<programmingLanguage>Programming

language</programmingLanguage>
<operatingSystem>0S: Linux</operatingSystem>
<operatingSystemVersion>0S version: 3.13.0-46-

generic</operatingSystemVersion>
<ddpXsdVersion>1.3.1</ddpXsdVersion>

</integrationInfo>
</createRequest>

Figure 4: Example CREATE Request

4.2. CreateRequest Afterpay & Klarna

4.2.1. Request

This element contains the information
about the integration:

1.When a plugin is used the plugin and
the version can be stated.

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

4. The operating system and the OS
version.

5. The XSD version of CM that is used.

To support invoicing to shoppers by third parties like Afterpay and Klarna additional information
about the shopper and the content of the invoice is required as outlined below:

1. Date of birth of the shopper
2. Valid phone number
3. All products as a separate item

The below example of the CREATE request describes the various elements more specifically.

Request

<shopper id="client id">

<name>

<first>Johan</first>

<middle>de</middle>

<last>Vries</last>
</name>
<email>johan.devries@cmpayments.com</email>
<language code="nl"/>
<gender>M</gender>
<dateOfBirth>1983-03-21</dateOfBirth>
<phoneNumber>
<mobilePhoneNumber>0612345678</mobilePhoneNumber>

</shopper>

<totalGrossAmount currency="EUR">3330</totalGrossAmount>

<invoice>

<totalNetAmount currency="EUR">3000</totalNetAmount>

<totalVatAmount rate="21"
currency="EUR">210</totalVatAmount>

<totalVatAmount rate="6"
currency="EUR">120</totalVatAmount>

CM.com

Explanation and
requirements (See XSD and

XSD type definition)

This element contains the information
about the shopper.

1.Providing a valid email address is a
requirement in order to successfully
process payments.

2. Provide the preferred language to
use for the web menu according ISO
639-1.2002 Part 1. Alpha-2 Language
Codes (lowercase)..

3. Provide the gender of the shopper
according the information in XSD2:
M = Male

F = Female

U = Undefined

4. Provide the date of birth as yyyy-
mm-dd.

5. Provide either a home or @ mobile
number.

This element sets the total gross
amount for the shopper to pay.

1.Provide the currency of the amount
to pay as an integer in the smallest
available unit.

As part of the <invoice> element the
request information is used in the One
Page Checkout to display the product
information to the shopper on the
payment menu.

Page 14 of 37
Version 1.0 - Public

<item number="1"> 1.ltem numbers are integers adding up
<name>Kingston microSD kaart 32GB</name> by 1 for each item.
<code>SDC4/4GB-2ADP</code>

<quantity unitOfMeasure="PCS">1</quantity> 2.Ensure to correctly calculate

<description>Kingston microSD kaart 32GB met <netAmount> and <grossAmount> as
adapter</description> for AfterPay and Klarna Invoice this is
<netAmount currency="EUR">1000</netAmount> subject to the risk check process.

<grossAmount currency="EUR">1210</grossAmount>
<vat rate="21">
<amount currency="EUR">210</amount>
</vat>
<totalNetAmount currency="EUR">1000</totalNetAmount>
<totalGrossAmount currency="EUR">1210</totalGrossAmount>
<totalVat rate="21">
<amount currency="EUR">210</amount>
</totalvat>
</item>

Figure 5: Example CREATE Request request when Afterpay of Klarna is used

e Net amounts, gross amounts and VAT amounts in relation to these amounts at item level
should always correctly add-up.

e A sale or discount should be included in the CREATE request as a separate product item. For
a discount item the amount would be negative.

4.2.2. Response

The response of the create call will contain either a success or an error status:

e Success: If the CREATE request was successfully processed, the response will contain the
transaction key which is the unique identifier of the Order in the Payment system and its
subsequent payment(-attempts). NOTE! A success response does not mean the order has
been processed successfully, it means the CREATE request was successfully processed.

e Error: If the CREATE request was not successfully processed by the Payment system, the
response will contain an error code specifying the reason of the failure. The <error code> is
defined in the XSD and may be used for error handling. The description of the error code
however is for information purposes only and may change without notice.

Response SUCCESS Explanation

<createResponse The element <createSuccess> indicates
xmlns="http://www.docdatapayments.com/services/paymentservice/1l that the order is successfully accepted
_3/"> by the Payment system. The unique
<createSuccess> <key> is required to further initiate
<success code="SUCCESS">Operation successful.</success> payment actions.
<key>F022EAQ07FC10FDA97730FBFE67453D40</key>
</createSuccess>
</createResponse>

Figure 6: Example CREATE Request response: the payment order has been accepted for processing

Response ERROR Explanation

<createResponse The element <createError> indicates the

xmlns="http://www.docdatapayments.com/services/paymentservice/1 reason of the failure. See Figure 8 for a

_3/"> list of possible error codes.
<createError>

<error code="REQUEST DATA INCORRECT">Invalid payment
profile for the order</error>
</createError>
</createResponse>

Figure 7: Example CREATE Request response: the order could not be accepted by the Payment system for
processing

Page 15 of 37
CM.com Version 1.0 - Public

Error code Explanation

REQUEST DATA INCORRECT
REQUEST DATA MISSING

SECURITY ERROR

INTERNAL ERROR

UNKNOWN ERROR

Figure 8: List of error codes

4.3. startRequest without a token

Request data is incorrect
Request data is missing

Error related to security violations such
as login failure or blocked IP address

Payment system error

The error is not specified

The START request is specific to the Webdirect scenario where a payment can be controlled without
online interaction with the shopper. See Figure 10 for an overview of payment methods available for

Webdirect.

4.31. Request

The START request requires the unique key as provided in the response of the CREATE request. In
addition the START request should include the minimum required payment details of the anticipated
payment methods as defined in the XSD. Note that the elements and information types for each of the
elements may be different for each of the payment methods available. Therefore it is best practice to
always provide the complete set of user data and order details in the CREATE request as there is no

option to add details later.

Request Explanation

<startRequest
xmlns="http://www.docdatapayments.com/services/paymentservice/1
~3/" version="1.3">

<merchant name="webshopXYZ" password="p5V4MZgs"/>
<paymentOrderKey>F022EAQ07FC10FDA97730FBFE67453D40</paymentOrder
Key>

<payment>
<paymentMethod>MASTERCARD</paymentMethod>
<masterCardPaymentInput>
<cardHolderName>John Doe</cardHolderName>
<cardNumber>5123456789012346</cardNumber>
<expiryDate month="01" year="23"/>
<securityCode>123</securityCode>
</masterCardPaymentInput>
</payment>

<returnUrl>/webshop/landingpage.jsf</returnUrl>

CM.com

For each call this section identifies the
Merchant and the order reference.

1.The element <merchant> provides the
Merchant credentials as setup in the
Merchant Back Office.

2.The <paymentOrderKey> refers to the
unique <key> which is provided in the
response of a successful CREATE
request.

The element <paymentMethod>
provides the name of the payment
method to be used to collect the amount
to be paid.

The element
<masterCardPaymentinput> is specific
for the payment method ‘mastercard’ as
provided in the <paymentMethod>
element of the XSD.

For a list of payment methods and their
required payment input requirements
see Figure 10.

The element <returnUrl> provides the
landing page of the webshop after the
shopper finishes 3D secure. NOTE this
shouldn’t be the success page since it is

Page 16 of 37
Version 1.0 - Public

<shopperInfo>
<shopperIp>211.111.111.1</shopperIp>

<browserAccept>text/html, application/xhtml+xml, application/xml;

g=0.9,*/*;g=0.8</browserAccept>
<browserUserAgent>Mozilla/5.0
rv:36.0)
</shopperInfo>

<integrationInfo>

<webshopPlugin>Webshop plugin</webshopPlugin>

<webshopPluginVersion>Webshop plugin
version</webshopPluginVersion>

<integratorName>Integrator name</integratorName>

<programmingLanguage>Programming
language</programmingLanguage>
<operatingSystem>0S: Linux</operatingSystem>
<operatingSystemVersion>0S version:
generic</operatingSystemVersion>
<ddpXsdVersion>1.3.1</ddpXsdVersion>
</integrationInfo>
</startRequest>

Figure 9: Example START Request: Payment by Mastercard

Payment method
description

<paymentMethod>

(Windows NT 6.1;
Gecko/20100101 Firefox/36.0</browserUserAgent>

3.13.0-46-

Still unknown at this point if the payment
/s successful.

The element <shopperinfo> contains
the mandatory elements for 3D secure
(these are standard HTTP header
elements):

WOW64 ; 1. The IP address of the shopper

2. The browser acceptance criteria
3. The browser User Agent

This element contains the information
about the integration:

1.When a plugin is used the plugin and
the version can be stated.

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

4. The operating system and the OS
version.

5. The XSD version of CM that is used.

Required information. See XSD section:

<complex Type
name="paymentRequestinput”>

AMEX American Express

BANK_TRANSFER Bank transfer
ELV ELV (German direct debit)

SEPA_DIRECT DEBIT SEPA direct Debit

MASTERCARD Mastercard

VISA Visa

MAESTRO Maestro

MISTERCASH Bancontact-Mistercash

POINT OF SALE Point2Pay

OFFLINE Offline payment

IDEAL iDEAL

amexPaymentInput
bankTransferPaymentInput
elvPaymentInput
directDebitPaymentInput
masterCardPaymentInput
visaPaymentInput
maestroPaymentInput
misterCashPaymentInput
pointOfSalePaymentInput
offlinePaymentInput

iDealPaymentInput

Figure 10: Overview of the payment methods available for Webdirect including the referral to their requirements as

described in the XSD

4.3.2. Response

The response of the START request will contain either an error or a success status:

e Success: If the START request was successfully processed, the response will contain the
unique payment ID which is required to query the status of the payment order or cancelling
the specific payment order in a later stage. NOTE! A success response does not mean the
order has been processed successfully, it means the START request was successfully

processed.

CM.com

Page 17 of 37
Version 1.0 - Public

e Error: If the START request was not successfully processed by the Payment system, the
response will contain an error code specifying the reason of the failure. The <error code> is
defined in the XSD and may be used for error handling. The description of the error code
however is for information purposes only and may change without notice.

Response SUCCESS Explanation

<startResponse The element <startSuccess> indicates

xmlns="http://www.docdatapayments.com/services/paymentservice/1 that the request is successfully accepted

_3/"> by the Payment system for processing.
<startSuccess>

<success code="SUCCESS">Operation successful.</success>

<paymentResponse> The element <paymentResponse>
<paymentSuccess> provides a unique identifier specific for
<status>REDIRECTED7FOR7AUTHENTICATION</status> this payment order. This unique ID is
<1d>4912345678</id> called the Payment ID (PID). It also
</paymentSuccess> provides the current status of the
</paymentResponse> payment.
<redirect> The element <redirect> provides all
<method>POST</method> details needed to redirect the customer

<url>https://test.docdatapayments.com/ps sim/3dsecureauthentica to the acquirer.
tion.jsf?data=NTEyMzQ1Njc40TAxMjMONg==</url>
<parameters>
<parameter name="MD">4912345678</parameter>
<parameter
name="PaReq">eJxVkVFygjAQhq/C5L0kJKLUWdaxMp360GNbparameter>
<parameter
name="TermUrl">/ps_sim/parameters.jsf</parameter>
</parameters>
</redirect>
</startSuccess>
</startResponse>

Figure 11: Example START Request response: The request is accepted.

Response ERROR Explanation

<startResponse The element <startError> indicates the
xmlns="http://www.docdatapayments.com/services/paymentservice/1l reason of the failure. See Figure 13 for a
_3/"> list of possible error codes.
<startError>
<error code="REQUEST DATA INCORRECT">Payment for order Note: The <error code> is defined in the
could not be authorized.</error> XSD and may be used for error handling.
</startError> The description is for information
</startResponse> purposes only and may change without
notice.

Figure 12: Example START Request response: The request has not been accepted for processing

Error code Explanation

REQUEST_ DATA INCORRECT Request data is incorrect
REQUEST DATA MISSING Request data is missing
SECURITY ERROR Error related to security violations such as login

failure or blocked IP address.
INTERNAL ERROR Payment system error

UNKNOWN ERROR The error is not specified

Figure 13: Error codes and explanation

Page 18 of 37
CM.com Version 1.0 - Public

4.4. startRequest with a token

If the token API was used to create a token, then it is possible to start a payment with the token. A
token will never contain the security code, so this needs to be sent separately in the START request.

4.41. Request

Request Explanation

<startRequest
xmlns="http://www.docdatapayments.com/services/paymentservice/1l
_3/" version="1.3">

<merchant name="webshopXYZ" password="p5V4MZgs"/>
<paymentOrderKey>F022EAQ07FC10FDA97730FBFE67453D40</paymentOrder

Key>

<token key="6a277b44520111b027ad4£3363eb977be9c261">
<masterCardTokenInput>
<securityCode>123</securityCode>
</masterCardTokenInput>
</token>

<returnUrl>/webshop/landingpage.jsf</returnUrl>

<shopperInfo>
<shopperIp>211.111.111.1</shopperIp>

<browserAccept>text/html, application/xhtml+xml, application/xml;
g=0.9,*/*;g=0.8</browserAccept>
<browserUserAgent>Mozilla/5.0 (Windows NT 6.1; WOW64;
rv:36.0) Gecko/20100101 Firefox/36.0</browserUserAgent>
</shopperInfo>

<integrationInfo>
<webshopPlugin>Webshop plugin</webshopPlugin>
<webshopPluginVersion>Webshop plugin

version</webshopPluginVersion>
<integratorName>Integrator name</integratorName>
<programmingLanguage>Programming

language</programmingLanguage>
<operatingSystem>0S: Linux</operatingSystem>
<operatingSystemVersion>0S version: 3.13.0-46-

generic</operatingSystemVersion>
<ddpXsdVersion>1.3.1</ddpXsdVersion>

</integrationInfo>
</startRequest>

For each call this section identifies the
Merchant and the order reference.

1.The element <merchant> provides the
Merchant credentials as setup in the
Merchant Back Office.

2.The <paymentOrderKey> refers to the
unique <key> which is provided in the
response of a successful CREATE
request.

The <token> contains the mandatory
elements for the mastercard payment:

1. The token key to access the earlier
stored payment input.

2. The security code to authorize the
payment

The element <returnUrl> provides the
landing page of the webshop after the
shopper finishes 3D secure. NOTE this
shouldn’t be the success page since it is
still unknown at this point if the payment
is successful.

The element <shopperinfo> contains
the mandatory elements for 3D secure
(these are standard HTTP header
elements:

1. The IP address of the shopper
2. The browser acceptance criteria
3. The browser User Agent

The element <integrationinfo> contains
the information about the integration:

1.When a plugin is used the plugin and
the version can be stated.

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

4. The operating system and the OS
version.

5. The XSD version of CM that is used.

Figure 14: Example START Request with token and security code: Payment by Mastercard

4.5. proceedRequest

The PROCEED request is specific to the Webdirect scenario where the shopper is redirected to an
acquirer. It is used to finish the authorisation after the merchant returns from the acquirer. For
example this is the case when the merchant redirected the shopper to 3D secure.

CM.com

Page 19 of 37
Version 1.0 - Public

4.5.1. Request

The PROCEED request requires the unique payment ID as provided in the response of the START
request. The request should further contain all minimum required information which is mandatory to
successfully process the authorisation of the payment.

Request Explanation

<proceedRequest For each call this section identifies the
xmlns="http://www.docdatapayments.com/services/paymentservice/1l Merchant and the payment reference.
3/" version="1.3">
~ <merchant name="webshopXYZ" password="p5V4Mzgs"/> I.The element <merchant> provides the
<paymentId>4907817914</paymentId> Merchant credentials as setup in the
Merchant Back Office.

2.The <paymentld> refers to the unique
1D which is provided in the response of a
successful START request.

<threeDomainSecureAuthenticationResult> The element
<MD>4907817914</MD> <threeDomainSecureAuthenticationRe

sult> contains the mandatory elements

<PARes>eJzdmEmP4zqSg0/6FYXsolFPu201XNnQvlmy9sU3bZZk7dZq/fqWM1/V for authorizing a 3D secure payment:

g6kuNHrm1BgDiSSDwWAwW

gvxI6vSPpSq/TMm] z5v62xv8B/T2Jam]Js7r INubbXF£j29f+1Go46Bs6uTbW92 1. The element <MD> (Merchant Data)

8/eP9ZGWPJGHM.... . can be found in the response of the 3D

</PARes> secure request.

</threeDomainSecureAuthenticationResult>
2. The element <PARes> s the

authentication information sent by the

card issuer
<integrationInfo> This element contains the information
<webshopPlugin>Webshop plugin</webshopPlugin> about the integration:
<webshopPluginVersion>Webshop plugin
version</webshopPluginVersion> 1.When a plugin is used the plugin and
<integratorName>Integrator name</integratorName> the version can be stated.

<programmingLanguage>Programming
language</programmingLanguage>

<operatingSystem>0S: Linux</operatingSystem>

<operatingSystemVersion>0S version: 3.13.0-46-
generic</operatingSystemVersion>

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

<ddpXsdVersion>1.3.1</ddpXsdVersion> 4. The operating system and the OS
</integrationInfo> version.
</proceedRequest>

5. The XSD version of CM that is used.

Figure 15: Example PROCEED Request: 3D secure Payment

4.5.2. Response

The response of the PROCEED request will contain either an error or a success status:

e Success: if the PROCEED request was successfully processed, the response will contain the
status of the payment

e Error: If the PROCEED request was not successfully processed by the Payment system, the
response will contain an error code specifying the reason of the failure. The <error code> is
defined in the XSD and may be used for error handling. The description of the error code
however is for information purposes only and may change without notice.

Response SUCCESS Explanation

<proceedResponse The element <proceedSuccess>

xmlns="http://www.docdatapayments.com/services/paymentservice/1l indicates that the request is successfully

- 3/" ddpXsdversion="1.3.1"> accepted by the Payment system for
<proceedSuccess> processing.

<success code="SUCCESS">Operation successful.</success>
However this does not indicate a

successful payment!

Page 20 of 37
CM.com Version 1.0 - Public

<paymentResponse> The <paymentResponse> provides the
<paymentSuccess> status of the payment.
<status>AUTHORIZED</status>
<id>4907817914</id>
</paymentSuccess>
</paymentResponse>
</proceedSuccess>
</proceedResponse>

Figure 16: Example PROCEED Request response: The request is accepted.

Response ERROR Explanation

<proceedResponse The element <proceedErrors> indicates
xmlns="http://www.docdatapayments.com/services/paymentservice/1l the reason of the failure. See Figure 18
_3/" ddpXsdversion="1.3.1"> for a list of possible error codes.
<proceedErrors>
<error code="REQUEST DATA INCORRECT">Payment for order Note: The <error code> is defined in the
could not be authorized.z/errgr> XSD and may be used for error handling
</proceedErrors> The description is for information
</proceedResponse> purposes only and may change without
notice.

Figure 17: Example PROCEED Reqguest response: The request has not been accepted for processing

Error code Explanation

REQUEST DATA INCORRECT Request data is incorrect
REQUEST DATA MISSING Request data is missing
SECURITY ERROR Error related to security violations such as login

failure or blocked IP address.
INTERNAL ERROR Payment system error

UNKNOWN_ERROR The error is not specified

Figure 18: Error codes and explanation

4.6. cancelRequest

4.6.1. Request

The purpose of the CANCEL request is to force the Payment system not to accept any payment
actions for the given Order anymore. In a scenario where a shopper has cancelled the order in the web
shop, the CANCEL request is to be used to synchronize the administration in both the web shop and
the Payment system to ensure no payments are processed by CM for the order.

Request Explanation

<cancelRequest The element <PaymentOrderKey> refers

xmlns="http://www.docdatapayments.com/services/paymentservice/1l to the unique transaction <key> as

_3/" version="1.3"> provided in the response of the
<merchant name="webshopXYZ" password="p5V4MZgs"/> successful CREATE request.

<paymentOrderKey>F022EAQ07FC10FDA97730FBFE67453D40</paymentOrder
Key>

Page 21 of 37
CM.com Version 1.0 - Public

<integrationInfo> This element contains the information
<webshopPlugin>Webshop plugin</webshopPlugin> about the integration:
<webshopPluginVersion>Webshop plugin

version</webshopPluginVersion> 1.When a plugin is used the plugin and
<integratorName>Integrator name</integratorName> the version can be stated.
<programmingLanguage>Programming

language</programmingLanguage>
<operatingSystem>0S: Linux</operatingSystem>
<operatingSystemVersion>0S version: 3.13.0-46-

generic</operatingSystemVersion>

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

<ddpXsdVersion>1.3.1</ddpXsdVersion> 4. The operating system and the OS
</integrationInfo> version.
</cancelRequest>

5. The XSD version of CM that is used

Figure 19: Example CANCEL Request

4.6.2. Response

The response of the CANCEL request will contain either an error or a success status:

e Success: If the CANCEL request was successfully processed. The status of the transaction will
be updated by the Payment system. NOTE! A success response does not mean the order has
been cancelled successfully, it means the CANCEL request was successfully processed.

e Error: If the CANCEL request was not successfully processed by the Payment system, the
response will contain an error code specifying the reason of the failure. The <error code> is
defined in the XSD and may be used for error handling. The description of the error code
however is for information purposes only and may change without notice.

The response of the cancelRequest does not confirm that the order indeed is cancelled. Always
use the STATUS request to retrieve the actual status of the Order and its payments and update
the web shop order administration accordingly.

Response SUCCESS Explanation

<cancelResponse The element <cancelSuccess> indicates
xmlns="http://www.docdatapayments.com/services/paymentservice/1l that the request to cancel the
_3/"> transaction is accepted.
<cancelSuccess>
<success code="SUCCESS">Operation successful.</success> The element <result> indicates the
<result>SUCCESS</result> Status of the cancellation of the
</cancelSuccess> underlying payment(s)
</cancelResponse>

Figure 20: Example CANCEL Request response: The request is accepted.

Response ERROR Explanation

<cancelResponse The element <cancelError> indicates the

xmlns="http://www.docdatapayments.com/services/paymentservice/1l reason of the failure. See Figure 22 for a

- 3/"> list of possible error codes.
<cancelError>

<error code="REQUEST DATA INCORRECT">Order could not be
found with the given key.</error>
</cancelError>
</cancelResponse>

Page 22 of 37
CM.com Version 1.0 - Public

Figure 21: Example CANCEL Request response: The request has not been accepted for processing

Error code Explanation

REQUEST DATA INCORRECT Request data is incorrect
REQUEST_DATA MISSING Request data is missing
SECURITY ERROR Error related to security violations such as login

failure or blocked IP address.
INTERNAL ERROR Payment system error

UNKNOWN_ERROR The error is not specified

Figure 22: Error codes cancelRequest

4.7. captureRequest

4.7.1. Request

The purpose of the CAPTURE request is to force the Payment system to capture a payment order
which is successfully authorized for processing by the acquirer. This operation however is not required
in all scenario’s. Depending on the payment method, CM offers an option to automatically capture
payment orders after a predefined number of days. This option supports payment methods like
AfterPay and Klarna Invoice where products are only to be shipped when the products are collected
for shipment.

Refer to the payment method specific information for more details whether a manual CAPTURE is
required.

Request Explanation

<captureRequest The element <paymentld> refers to the
xmlns="http://www.docdatapayments.com/services/paymentservice/1l unique Payment ID as returned to the
_3/" version="1.3"> web shop when initiating @ STATUS call.
<merchant name="webshopXYZ" password="p5V4MZgs"/> See chapter 4.9 for more information
<paymentId>4907435245</paymentId> how to initiate @ STATUS call and
<amount currency="EUR">1000</amount> process the Status Report details.
<integrationInfo> This element contains the information
<webshopPlugin>Webshop plugin</webshopPlugin> about the integration:
<webshopPluginVersion>Webshop plugin
version</webshopPluginVersion> 1.When a plugin is used the plugin and
<integratorName>Integrator name</integratorName> the version can be stated.

<programmingLanguage>Programming
language</programmingLanguage>

<operatingSystem>0S: Linux</operatingSystem>

<operatingSystemVersion>0S version: 3.13.0-46-
generic</operatingSystemVersion>

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

<ddpXsdVersion>1.3.1</ddpXsdVersion> 4. The operating system and the OS
</integrationInfo> version.
</captureRequest>

5. The XSD version of CM that is used

Figure 23: Example CAPTURE Request

4.7.2. Response

The response of the CAPTURE request will contain either a success or an error status:

Page 23 of 37
CM.com Version 1.0 - Public

e Success: If the CAPTURE request was successfully processed. The status of the transaction
will be updated by the Payment system. NOTE! A success response does not mean the
capture has been processed successfully, it means the CAPTURE request was successfully
processed.

e Error: If the CAPTURE request was not successfully processed by the Payment system, the
response will contain an error code specifying the reason of the failure. The <error code> is
defined in the XSD and may be used for error handling. The description of the error code
however is for information purposes only and may change without notice.

The response of the captureRequest does not confirm that the order indeed is captured. Always
use the STATUS request to retrieve the actual status of the Order and its payments and update
the web shop order administration accordingly.

Response SUCCESS Explanation

<captureResponse The element <captureSuccess>

xmlns="http://www.docdatapayments.com/services/paymentservice/1 indicates that the request to capture the

_3/"> transaction is accepted.
<captureSuccess>

<success code="SUCCESS">Operation successful.</success>
</captureSuccess>
</captureResponse>

Figure 24: Example CAPTURE Request response: The request is accepted.

Response ERROR Explanation
<captureResponse The element indicates
xmlns="http://www.docdatapayments.com/services/paymentservice/1l the reason of the failure. See Figure 26 for a list
3 / LSS X .
B of possible error codes.

<error code="REQUEST DATA INCORRECT">Payment id
incorrect.</error>
</captureError>
</captureResponse>

Figure 25: Example CAPTURE Request response: The request has not been accepted for processing

Error code Explanation

REQUEST DATA INCORRECT Request data is incorrect

REQUEST DATA MISSING Request data is missing

SECURITY ERROR Error related to security violations such as login

failure or blocked IP address.
INTERNAL ERROR Payment system error

UNKNOWN_ERROR The error is not specified

Figure 26: Error codes cancelRequest

4.8. refundRequest

4.81. Request

In cases where a Merchant wants to refund a certain amount on a Payment Order the REFUND
request can be used. The refundRequest enables the refund process to be controlled and automated
end-to-end between the web shop and the Payment system.

Page 24 of 37
@ CM.com Version 1.0 - Public

Request Explanation

<refundRequest The element <paymentld> refers to the

xmlns="http://www.docdatapayments.com/services/paymentservice/1l unique Payment ID as returned to the

_2/" version="1.3"> web shop when initiating @ STATUS call.
<merchant name="webshopXYZ" password="p5V4MZqgs"/> See chapter Error! Reference source
<paymentId>4907435245</paymentId> not found. for more information how to
<amount currency="EUR">100</amount> initiate & STATUS call and process the

Status Report details.

<refundBankAccount> The <refundBankAccount> is optional.
<holderName>Ted Vinke</holderName> The bank account information is only
<holderCity>Nijmegen</holderCity> required for payment methods for which
<holderCountry code="NL"/> no information is known to the system
<bic>INGBNL2A</bic> yet. If provided here, but not needed,
<iban>NL47INGB0007673523</iban> then it will be ignored (e.g. for iIDEAL or
</refundBankAccount> credit card refunds)
<integrationInfo> This element contains the information
<webshopPlugin>Webshop plugin</webshopPlugin> about the integration:
<webshopPluginVersion>Webshop plugin
version</webshopPluginVersion> 1.When a plugin is used the plugin and
<integratorName>Integrator name</integratorName> the version can be stated.

<programmingLanguage>Programming
language</programmingLanguage>

<operatingSystem>0S: Linux</operatingSystem>

<operatingSystemVersion>0S version: 3.13.0-46-
generic</operatingSystemVersion>

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

<ddpXsdVersion>1.3.1</ddpXsdVersion> 4. The operating system and the OS
</integrationInfo> version.
</refundRequest>

5. The XSD version of Docdata that is
used

Figure 27: Example REFUND Reguest

4.8.2. Response

The response of the REFUND request will contain either a success or an error status:

e Success: If the REFUND request was successfully processed. The status of the transaction will
be updated by the Payment system. NOTE! A success response does not mean the refund has
been processed successfully, it means the REFUND request was successfully processed.

e Error: If the REFUND request was not successfully processed by the Payment system, the
response will contain an error code specifying the reason of the failure. The <error code> is
defined in the XSD and may be used for error handling. The description of the error code
however is for information purposes only and may change without notice.

The response of the refundRequest does not confirm that the order indeed is refunded. Always
use the STATUS request to retrieve the actual status of the Order and its payments and update
the web shop order administration accordingly.

Response SUCCESS Explanation

<refundResponse The element <refundSuccess> indicates
xmlns="http://www.docdatapayments.com/services/paymentservice/1l that the request to refund an given
3/ amount is accepted for processing.
<refundSuccess>
<success code="SUCCESS">Operation successful.</success>
</refundSuccess>
</refundResponse>

Page 25 of 37
CM.com Version 1.0 - Public

Figure 28: Example REFUND Regquest response: The request is accepted.

Response ERROR Explanation
<refundResponse The element indicates
xmlns="http://www.docdatapayments.com/services/paymentservice/1l the reason of the failure. See Figure 30 for a list
3 / LSS X -
<refundError> of possible error codes.

<error Code:"REQUESTiDATAiINCORRECT">Invalid
amount.</error>
</refundError>
</refundResponse>

Figure 29: Example REFUND Request response: The request has not been accepted for processing

Error code Explanation

REQUEST DATA INCORRECT Request data is incorrect

REQUEST DATA MISSING Request data is missing

SECURITY ERROR Error related to security violations such as login

failure or blocked IP address.
INTERNAL ERROR Payment system error

UNKNOWN_ERROR The error is not specified

Figure 30: Error codes refundRequest

4.9. statusRequest

4.91. Request

The STATUS request can be used to retrieve a report reflecting the actual status of an Order, its
payments and its captures or refunds. The statusRequest is used to determine whether an Order is
considered “paid”.

Request Explanation

<statusRequest The element <PaymentOrderKey> refers

xmlns="http://www.docdatapayments.com/services/paymentservice/1 to the unique transaction <key> as

_3/" version="1.3"> provided in the response of the
<merchant name="webshopXYZ" password="p5V4MZgs" /> successful CREATE request.

<paymentOrderKey>A1AECDCCCB8577A9C89A146263E38554</paymentOrder

Key>

<integrationInfo> This element contains the information

<webshopPlugin>Webshop plugin</webshopPlugin> about the integration:

<webshopPluginVersion>Webshop plugin
version</webshopPluginVersion>
<integratorName>Integrator name</integratorName> the version can be stated
<programmingLanguage>Programming
language</programmingLanguage>
<operatingSystem>0S: Linux</operatingSystem>
<operatingSystemVersion>0S version: 3.13.0-46-
generic</operatingSystemVersion>

1.When a plugin is used the plugin and

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

<ddpXsdVersion>1.3.1</ddpXsdVersion> 4. The operating system and the OS
</integrationInfo> version
</statusRequest>

5. The XSD version of CM that is used

Figure 31: Example STATUS Request

Page 26 of 37
CM.com Version 1.0 - Public

4.9.2. Response

The response of the STATUS request will contain either a success or an error status:

e Success: If the STATUS request was successfully processed. The status of the transaction will
be updated by the Payment system. NOTE! A success response does not mean the order has
been processed successfully, it means the STATUS request was successfully processed.

e Error: If the STATUS request was not successfully processed by the Payment system, the
response will contain an error code specifying the reason of the failure. The <error code> is
defined in the XSD and may be used for error handling. The description of the error code
however is for information purposes only and may change without notice.

Response SUCCESS Explanation

<statusResponse The element <statusSuccess> indicates
xmlns="http://www.docdatapayments.com/services/paymentservice/1l that the request is accepted by the
_3/"> Payment system for processing the data.
<statusSuccess>
<success code="SUCCESS">Operation successful.</success>
<report> The element <approximateTotals>
<approximateTotals exchangedTo="EUR" provides values which can be used to
exchangeRateDate="2015-07-14 16:12:14"> determine whether an order is
<totalRegistered>3330</totalRegistered> considered ‘paid’.

<totalShopperPending>3330</totalShopperPending>
<totalAcquirerPending>0</totalAcquirerPending>
<totalAcquirerApproved>0</totalAcquirerApproved>
<totalCaptured>0</totalCaptured>
<totalRefunded>0</totalRefunded>
<totalChargedback>0</totalChargedback>
<totalReversed>0</totalReversed>
</approximateTotals>

<payment> For each Payment registered to the
<1d>4907819251</1id> Payment Order as represented by the
<paymentMethod>BANK TRANSFER</paymentMethod> <PaymentOrderKey>, the status details
<authorization> of the payment are provided in the
<status>AUTHORIZED</status> corresponding <payment> element.

<amount currency="EUR">3330</amount>
<confidenceLevel>SHOPPER PENDING</confidenceLevel>
<capture>
<status>STARTED</status>
<amount currency="EUR">3330</amount>
</capture>
</authorization>
</payment>
</report>
</statusSuccess>
</statusResponse>

Figure 32: Example STATUS Request response

Response ERROR Explanation

<statusResponse The element <statusError> indicates the

xmlns="http://www.docdatapayments.com/services/paymentservice/1l reason of the failure. See Figure 34 for a

_3/"> list of possible error codes.
<statusError>

<error code="REQUEST DATA INCORRECT">Order could not be
found with the given key.</error>
</statusError>
</statusResponse>

Figure 33: Example STATUS Request response: The request has not been accepted for processing

Page 27 of 37
CM.com Version 1.0 - Public

Error code Explanation

REQUEST DATA INCORRECT Request data is incorrect

REQUEST DATA MISSING Request data is missing

SECURITY ERROR Error related to security violations such as login

failure or blocked IP address.
INTERNAL ERROR Payment system error

UNKNOWN_ERROR The error is not specified

Figure 34: Error codes refundRequest

4.10.statusExtendedRequest

4.10.1. Request

The EXTENDED STATUS request can be used to retrieve additional information of an Order, its
payments and its captures or refunds.

Request Explanation

<extendedStatusRequest The element <PaymentOrderKey> refers

xmlns="http://www.docdatapayments.com/services/paymentservice/1 to the unique transaction <key> as

_3/" version="1.3"> provided in the response of the
<merchant name="testshop" password="wdsYFFQL"/> successful CREATE request.

<paymentOrderKey>625BBODD8BF2DAAFDD36257FD2D5B9E6</paymentOrder

Key>

<integrationInfo> This element contains the information
<webshopPlugin>Webshop plugin</webshopPlugin> about the integration:
<webshopPluginVersion>Webshop plugin

version</webshopPluginVersion>
<integratorName>Integrator name</integratorName> the version can be stated.
<programmingLanguage>Programming

language</programmingLanguage>
<operatingSystem>0S: Linux</operatingSystem>
<operatingSystemVersion>0S version: 3.13.0-46-

generic</operatingSystemVersion>
<ddpXsdVersion>1.3.1</ddpXsdVersion> 4. The operating system and the OS

</integrationInfo> version
</extendedStatusRequest>

1.When a plugin is used the plugin and

2. When an external integrator is used
the name of the integrator can be stated.

3. The programming language

5. The XSD version of CM that is used

Figure 35: Example EXTENDED STATUS Request

4.10.2. Response

The response of the EXTENDED STATUS request will contain either a success or an error status:

e Success: If the EXTENDED STATUS request was successfully processed. The status of the
transaction will be updated by the Payment system. NOTE! A success response does not
mean the order has been processed successfully, it means the EXTENDED STATUS request
was successfully processed.

e Error: If the EXTENDED STATUS request was not successfully processed by the Payment
system, the response will contain an error code specifying the reason of the failure. The <error
code> is defined in the XSD and may be used for error handling. The description of the error
code however is for information purposes only and may change without notice.

Page 28 of 37
CM.com Version 1.0 - Public

Response SUCCESS

Explanation

<extendedStatusResponse
xmlns="http://www.docdatapayments.com/services/paymentservice/1l
_3/" ddpXsdversion="1.3.1">

<statusSuccess>
<success code="SUCCESS">Operation successful.</success>

<report>
<approximateTotals exchangedTo="EUR"
exchangeRateDate="2015-07-14 16:12:14">
<totalRegistered>3330</totalRegistered>
<totalShopperPending>3330</totalShopperPending>
<totalAcquirerPending>0</totalAcquirerPending>
<totalAcquirerApproved>0</totalAcquirerApproved>
<totalCaptured>0</totalCaptured>
<totalRefunded>0</totalRefunded>
<totalChargedback>0</totalChargedback>
<totalReversed>0</totalReversed>
</approximateTotals>
<payment>
<id>4907819251</id>
<paymentMethod>BANK TRANSFER</paymentMethod>
<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">3330</amount>
<confidenceLevel>SHOPPER PENDING</confidenceLevel>
<capture>
<status>STARTED</status>
<amount currency="EUR">3330</amount>
</capture>
</authorization>
<extended>
<riskChecks score="20">
<check score="0">name.amount.velocity</check>
<check score="0">amex.avs.postal.code</check>
<check score="0">amex.avs.address</check>
<check
score="0">allowed.issuer.ip.country.combination</check>
<check score="0">address.amount.velocity</check>
<check
score="0">bank.account.amount.velocity</check>
<check score="0">email.amount.velocity</check>
<check score="0">directpay.credit.check</check>
<check score="0">email.velocity</check>
<check score="0">3ds.issuer.liability</check>
<check score="0">bank.account.white.list</check>

<check score="0">creditcard.amount.velocity</check>
<check score="0">shopper.country.black.list</check>

<check score="0">bank.account.black.list</check>
<check score="0">ip.amount.velocity</check>
<check score="0">issuer.country.absence</check>
<check score="0">name.velocity</check>
<check score="0">bin.ranges.session</check>
<check
score="0">card.account.number.count.session</check>
<check score="0">address.velocity</check>
<check score="0">card.number.black.list</check>
<check score="0">ip.black.list</check>
<check score="0">zipcode.amount.velocity</check>
<check score="0">3ds.merchant.liability</check>
<check score="0">ip.white.list</check>
<check
score="20">ship.to.zipcode.housenumber.black.list</check>
<check score="0">iban.velocity</check>
<check score="0">zipcode.velocity</check>
<check
score="0">ship.to.zipcode.housenumber.velocity</check>
<check score="0">amex.avs.cm.name</check>
<check score="0">ip.velocity</check>
<check score="0">bank.account.velocity</check>
<check score="0">email.address.black.list</check>
<check score="0">card.number.white.list</check>
</riskChecks>
<bankTransferPaymentInfo>

CM.com

The element <StatusSuccess> indicates
that the request is accepted by the
Payment system for processing the data.

The element <approximateTotals>
provides values which can be used to
determine whether an order is
considered ‘paid’.

For each Payment registered to the
Payment Order as represented by the
<PaymentOrderKey>, the status details
of the payment are provided in the
corresponding <payment> element.

The element <riskChecks> provides the
scores of all riskchecks that are executed
for the given order.

The element
<bankTransferPaymentinfo> provides

Page 29 of 37
Version 1.0 - Public

<beneficiaryName>St. Found. docdata information specific for the used

payments</beneficiaryName> payment method.
<beneficiaryCity>Driebergen-

Rijsenburg</beneficiaryCity>
<beneficiaryCountry>NL</beneficiaryCountry>
<bankName>Bank</bankName>
<bankCity>Utrecht</bankCity>
<bic>DEUTNL2A</bic>
<iban>NL45DEUT0556977556</iban>

</bankTransferPaymentInfo>
</extended>
</payment>
</report>
</statusSuccess>
</extendedStatusResponse>

Figure 36: Example EXTENDED STATUS Request response

Response ERROR Explanation

<extendedStatusResponse The element <statusErrors> indicates

xmlns="http://www.docdatapayments.com/services/paymentservice/1 the reason of the failure. See Figure 38

~3/" ddpXsdVersion="1.3.1"> for a list of possible error codes.
<statusErrors>

<error code="REQUEST DATA INCORRECT">XML request does not
match XSD. The data is: cvc-type.3.1.3: The value
'78CDESACEO088003687F65F81ATDDEB4"' of element 'paymentOrderKey'
is not valid..</error>
</statusErrors>
</extendedStatusResponse>

Figure 37: Example STATUS Request response: The request has not been accepted for processing

Error code Explanation

REQUEST DATA INCORRECT Request data is incorrect
REQUEST DATA MISSING Request data is missing
SECURITY ERROR Error related to security violations such as login

failure or blocked IP address.
INTERNAL ERROR Payment system error

UNKNOWN _ERROR The error is not specified

Figure 38: Error codes refundRequest

4.11. Changes in the Order API

This paragraph describes what changes a merchant or integrator can expect in the XML, without
having to use a new version number for the XSD.

CM uses the <_any> element in the XSD as last element for responses. This allows for new elements to
be added in front of the <_any> element.

A merchant / integrator can expect the following:

e Additional elements as indicated by the <_any> element in the XSD. A merchant can test his
support for this element by supplying the testExtensibility attribute in the request, which
causes additional <_any> elements in the response. See figure 39 and 40 for an example
request and response.

¢ Unknown enumerated values to be returned. For example new error codes. These should not
be treated as exceptional, but rather as general cases.

e Elements in requests can become optional.

e The range of occurrences of elements in requests can be increased.

Page 30 of 37

CM.com Version 1.0 - Public

e The range of occurrences of elements in responses can be decreased.

¢ New optional elements become available in requests.

e A different XDS version in the response then the one used in the request. The XSD version
stated in the request should reflect the XSD version the merchant based the XML requests on.
The XSD version stated in the response is the latest one that is active on the server. This
should not be a problem, because all minor version upgrades should be backwards
compatible within the major version.

e The need to update your implementation if you want to use the new elements.

4.1.1. Request

Request Explanation

<statusRequest Next to the version number the attribute
xmlns="http://www.docdatapayments.com/services/paymentservice/1l testExtensibility is added with a value
_3/" version="1.3" testExtensibility="true"> true.

<merchant name="testshop" password="wdsYFFQL"/>
<paymentOrderKey>B68D771F347490D1528B396A56CF71EC</paymentOrder
Key>
<integrationInfo> This element contains the information
<webshopPlugin>Webshop plugin</webshopPlugin> about the integration:
<webshopPluginVersion>Webshop plugin
version</webshopPluginVersion>
<integratorName>Integrator name</integratorName> the version can be stated.
<programmingLanguage>Programming
language</programmingLanguage>
<operatingSystem>0S: Linux</operatingSystem>
<operatingSystemVersion>0S version: 3.13.0-46-
generic</operatingSystemVersion>
<ddpXsdVersion>1.3.1</ddpXsdVersion> 4. The operating system and the OS
</integrationInfo> version
</extendedStatusRequest>

1.When a plugin is used the plugin and
2. When an external integrator is used

the name of the integrator can be stated.

3. The programming language

5. The XSD version of CM that is used

Figure 39: Example STATUS Request including testExtensibility attribute

411.2. Response

Response SUCCESS Explanation

<statusResponse The element <statusSuccess> indicates

xmins="http.//www.docdatapayments.com/services/paymentservice/1_3/"> that the request is accepted by the

<statusSuccess> , Payment system for processing the data.
<success code="SUCCESS">0Operation successful.</success>
<report> The element <approximateTotals>
<approximateTotals exchangedTo="EUR" provides values which can be used to

exchangeRateDate="2015-07-14 16:12:14"> determine whether an order is

<totalRegistered>3330</totalRegistered> considered ‘paid’.

<totalShopperPending>3330</totalShopperPending>
<totalAcquirerPending>0</totalAcquirerPending>
<totalAcquirerApproved>0</totalAcquirerApproved>
<totalCaptured>0</totalCaptured>
<totalRefunded>0</totalRefunded>
<totalChargedback>0</totalChargedback>
<totalReversed>0</totalReversed>
< any> any</ any>

</approximateTotals>

<payment> The element <_any> indicates the places
<id>4907819251</id> in the XML were additional elements can
<paymentMethod>BANK TRANSFER</paymentMethod> be added.
<authorization>

<status>AUTHORIZED</status>
<amount currency="EUR">3330</amount>
<confidencelLevel>SHOPPER PENDING</confidenceLevel>
<capture>

<status>STARTED</status>

<amount currency="EUR">3330</amount>

< any> any</ any>

Page 31 of 37
CM.com Version 1.0 - Public

</capture>
< _any> any</ any>
</authorization>
< any> any</ any>
</payment>
< _any> any</ any>
</report>
< any> any</ any>
</statusSuccess>
</statusResponse>

Figure 40: Example STATUS Request response including <any> element

4.12. Example of an Update Url

The Status Update Notification uses a GET operation to a web shop url which is to be preconfigured in
the Merchant Backoffice. An example of the Update URL shown below:

http://www.merchantwebsite.com/update_order?order_id=

At the end of the url call a ”="-sign should be set in order for CM to add the specific order reference.

An example of the call from the payment service will look as follows with a merchant order reference
of 33:

http://www.merchantwebsite.com/update_order?order_id=33

CM support either sends Status Update Notifications to port 80 (HTTP) or port 443 (HTTPS).

When the GET operation returns a response other than a HTTP 200 response, CM assumes the
attempt to deliver the notification was not successful. In those cases CM will retry to deliver the Status
Update Notification for a maximum of 10 attempts. If still not successful after 10 attempts CM assumes
there is a severe problem with the web shop and will send out the Status Update notification as an
email to the contact person as configured in Merchant Backoffice.

4.13. Determining whether an order is paid

Within the logic of the Payment system, payment(-attempt)s are registered to a Payment Order which
is represented by a unique transaction key. The amount received by each of the payment attempts
within the Payment Order, add up to the total amount which is expected by the Merchant.

413.1. A calculated decision

As outlined in chapter Error! Reference source not found. the STATUS request is used to query the
status of an Order and provides the logic to determine whether an order is paid in full.

The first section in the status report as returned by the STATUS request is the element
<approximateTotals> which provides information about the amount to be paid, the amount already
confirmed as being received by CM and the amount still open for the shopper to pay during the
lifecycle of the payment Order.

The second part of the report structure provides the actual status for each Payment(-attempt). Each
Payment(-attempt) is tagged within a separate <payment> element and is referenced by its unique
<paymentiD>.

More detail of the different elements in the <approximateTotals> is listed in Figure 41.

Element Explanation

<TotalRegistered> The total amount in the currency of the order which was submitted in the CREATE
request as “TotalGrossAmount”. This is the amount the Merchant is expecting the
shopper to pay in full before shipping products.

Page 32 of 37
@ CM.com Version 1.0 - Public

http://www.merchantwebsite.com/update_order?order_id
http://www.merchantwebsite.com/update_order?order_id=33

<TotalAcquirerApproved> The total amount which acquirers have confirmed being paid by means of a capture. The
acquirer will transfer the amount to the Merchant. Either directly to the Merchant or
through CM.

This amount is the total sum of all payment(-attempt)s within the Payment Order for
which the <confidencelLevel> of the <authorization> is “ACQUIRER_APPROVED”.

<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">320</amount>
<confidenceLevel>ACQUIRER_APPROVED</confidenceLevel>
</authorization>
<TotalAcquirerPending> The total amount which is still pending with the acquirer to process. Although the
acquirer has confirmed to have received the instruction to settle the payment there is still
no guarantee that the funds are available for capture. Depending the acquirer policies
and processes CM will just await the successful capture confirmation by the acquirer.

This amount is the total sum of all payment(-attempt)s within the Payment Order for
which the <confidencelLevel> of the <authorization> is “ACQUIRER_PENDING”.

<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">865</amount>
<confidenceLevel>ACQUIRER_PENDING</confidenceLevel>
</authorization>
<TotalShopperPending> The total amount which the shopper is expected to pay. For example in case of a bank
transfer CM has not actually received the amount yet.

This amount is the total sum of all payment(-attempt)s within the Payment Order for
which the <confidencelLevel> of the <authorization> is “SHOPPER_PENDING”.

<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">495</amount>
<confidenceLevel>SHOPPER PENDING</confidenceLevel>
</authorization>
<TotalCaptured> This amount is the total sum of all Payment(-attempt)s within the Payment Order for
which the <status> of the <authorization> is “AUTHORIZED” and the <status> of the

<capture>is “CAPTURED”.

<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">360</amount>
<confidenceLevel>ACQUIRER_APPROVED</confidenceLevel>
<capture>
<status>CAPTURED</status>
<amount currency="EUR">360</amount>
</capture>
</authorization>
<TotalRefunded> This amount is the total sum of all payment(-attempt)s within the Payment Order for
which the <status> of the <authorization> is “AUTHORIZED” and the <status> of the
<refund> is “CAPTURED”.

<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">360</amount>
<confidenceLevel>ACQUIRER_APPROVED</confidenceLevel>
<capture>
<status>CAPTURED</status>
<amount currency="EUR">360</amount>
</capture>
<refund>
<status>CAPTURED</status>
<amount currency="EUR">120</amount>
</refund>
</authorization>

Note:

. In order to (partly) refund a payment(-attempt), the Payment(-attempt) should
have been successfully captured first.

<TotalChargedback> This amount is the total sum of all Payment(-attempt)s within the Payment Order for
which the <status> of the <authorization> is “AUTHORIZED” and the <status> of the
<chargeback> is “CAPTURED”.

<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">3310</amount>
<confidenceLeve1>ACQUIRER_APPROVED</confidenceLevel>
<capture>
<status>CAPTURED</status>
<amount currency="EUR">3310</amount>
</capture>

Page 33 of 37

CM.com Version 1.0 - Public

<TotalReversed>

<chargeback>
<chargebackId>23</chargebackId>
<status>CHARGED</status>
<amount currency="EUR">3310</amount>
<reason>DNOR Issuing bank is not allowed to execute direct
debit's.</reason>
</chargeback>
</authorization>
This amount is the total sum of all Payment(-attempt)s within the Payment Order for
which the <status> of the <authorization> is “AUTHORIZED” and there are <reversal>

elements.

<authorization>
<status>AUTHORIZED</status>
<amount currency="EUR">3310</amount>
<confidenceLeve1>ACQUIRER_APPROVED</confidenceLevel>
<capture>
<status>CANCELED</status>
<amount currency="EUR">3330</amount>
</capture>
<reversal>
<amount currency="EUR">3330</amount>
<reason>Cancel request through order api</reason>
</reversal>
</authorization>

Figure 41: Details of the <approximateTotals> element as returned in the XML response of the STATUS request.

Note

Keep in mind that the status report does not report funds actually been transferred from CM
or the acquirer to the bank account of the Merchant. This is a separate process.

Because the Payment system supports multiple currencies within a single Payment Order, the
amounts in the <approximateTotals> element may be converted values. The exchange rate is
based on the daily rates as published by the European Central Bank (ECB). The amounts
therefore are to be considered ‘calculated values’, solely available to support the decision and
business logic of the Merchant to determine when to ship the products. However when all
currencies are just euro’s all values correctly add up.

...S0 how should | determine whether the order is paid?

In most cases shoppers only choose one payment method and pay the amount in full. The logic to
determine if an order is paid therefore is straight forward.

413.2. Direct Payment: Monitor <totalAcquirerApproved> equals <totalRegistered>.

In case of a Direct Payment where the acquirer acknowledges the payment by means of either a direct
authorization, or authorization and capture in one go, the merchant may compare the amount
<totalAcquirerApproved> against the amount <totalRegistered>. When both amounts are equal, the
order is paid in full.

This logic applies to the following Payment Methods:

iDEAL
Creditcard
Debitcard
PayPal

Klarna Invoice
AfterPay

Sofort Uberweisung
Sofort e-banking
GiroPay
Point2Pay
Giftcard

EPS

@ CM.com

Page 34 of 37
Version 1.0 - Public

When the amounts <totalAcquirerApproved> and <totalRegistered> are not equal it is up to the
business logic of the Merchant to decide whether or not to ship the products.

413.3. Delayed Payment: Monitor <totalShopperPending> and
<totalAcquirerPending>
When the Merchant offers Delayed Payments the amount reported in <totalShopperPending> will be
greater than O.

This applies to the following Payment Method:

e Bank Transfer
e SEPA Direct Debit
e ELV

The Merchant may still have confidence that the shopper will pay and decide to ship the products.
However the Payment system will only confirm the amounts actually received from the shopper or
acquirer.

413.4. Safest route: Monitor <TotalCaptured> equals <totalRegistered>.

The safest route to determine whether or not to ship products is for the Merchants to monitor the
amount reported in <TotalCaptured>. When the amount <TotalCaptured> equals the amount reported
in <totalRegistered>, this means that CM has confirmation from the acquirer that they will transfer the
amount to the Merchant. Either directly to the Merchant or through the bank accounts of CM.

Page 35 of 37
@ CM.com Version 1.0 - Public

5. Backoffice configuration

In order to manage payment options, in the Merchant Backoffice add available payment methods to a
profile and determine in which sequence these methods should appear in the payment menu.

Assign payment methods to a profile

Stored profile payment method names.

Select profile: standard Add & delete profiles

Available payment methods

ACOREUS_OFEN_INVOICE Selected
AFTERPAY DIRECT_DEBIT SEPA DIRECT DEBIT
AFTERPAY_OPEN_INVOICE Visa -

AMEX

BELMONDO_CADEAUBON MASTERCARD

EBANKING << Remave IDEAL

EE\? : KLARMA_ACCOUNT

EPS BAMK_TRANSFER

FASHION_CHEQUE
FIUNCADEAU_GIFTCARD

GIROPAY

JUMBO_GOLFWERELD_GIFTCARD First
KBC

KLARNA_INVOICE Up
LOYALTY _IN_A_BOX

MAESTRO Down
MISTERCASH

NATIOMALE_BIOSCOOPBON_GIFTCARD Last

MNATIONALE_ENTERTAINMENTCARD
NATIONALE_KADOBON
OV_KADOKAART
PAYPAL_EXPRESS_CHECKOUT
PAYSAFECARD

PODIUM_GIFTCARD
POINT_OF_SALE

POS_OFFLINE

POST_FINANCE
SIEBEL_JUWELIERS_CADEAUKAART
SOFORT_UEBERWEISUNG
TCS_GIFT_CARD

VD _CADEAUKAART
WOETBAL_KADOBON

WIINCARD

Store changes

Figure 42: Assigning payment methods

To add a profile click on “Add & delete profiles”. This will open a new screen.

Add & delete profiles

Profile name Add profile

Store changes

Add settings for your profiles:

Configure assigned payment method names for your profiles
Configure language keys for your profiles

.
Q
.
Q

Figure 43: Profile management

Page 36 of 37
@ CM.com Version 1.0 - Public

Enter the profile name of your choice and save your changes by clicking the button Store changes.
Continue by adding payment methods to the profile.

When finished return to the ‘assign methods’ screen, select the profile from the pull down menu and
use the “add” and “remove” buttons to transfer payment methods to the box on the right hand side.

Assign payment methods to a profile

Select profile:

Available payment methods

BANK_TRANSFER
EBANKING
ELV

FASHION_CHEQUE
FONGQ_NL_GIFTCARD
GIROPAY
HYVES_AFREKENEN
IDEAL

KBC
LOYALTY_IN_A BOX
MASTERCARD

RABO_SMS_BETALEN
SEPA_DIRECT_DEBIT
SOFORT_UEBERWEISUNG
TC5_GIFT_CARD

Store changes

Figure 44: Profile management

PAYPAL_EXPRESS_CHECKOUT

Algemeen
TEST9amex
TEST9atos
TESTSsofortebanking
algemeen
all-af

bob

fashion chegue
giropay
intercard-ehy
intersolve
kbc_new
minitix
paypal_new
regio

sofort

vpro

Add & delete profiles

Selected

First
Up
Down

Last

Use the up and down arrow buttons First, Up, Down and Last to set the sequence of the payment
methods in the payment menu.

Assign payment methods to a profile

Select profile:

standard [w] A

Available payment methods

EBANKING

Figure 45: Profile assignment

IDEAL

Add = AMEX

AFTERPAY_OPEN_INVOICE

<<Remove | |1+ cTERCARD

KBC
VISA

BANK_TRANSFER

MISTERCASH
MAESTRO

VD_CADEAUKAART

PAYPAL_EXPRESS_CHECKOUT

GIROPAY
DIRECT_DEBIT
ELV

SOFORT_UEBERWEISUNG
WEB_SHOP_GIFT_CARD

In the above example iDEAL will be the first payment method displayed (on top) in the payment
menu, followed by AMEX. Changes you apply need to be stored by the “Store changes” button.

CM.com

Page 37 of 37
Version 1.0 - Public

	1. Introduction
	2. Interface
	2.1. Communication through SOAP
	2.2. TEST system
	2.3. Production system
	2.4. Definitions across systems
	2.5. Payment scenario
	2.5.1. One Page checkout
	2.5.2. Webdirect scenario

	2.6. Order API operations
	2.6.1. Create
	2.6.2. Start
	2.6.3. Proceed
	2.6.4. Cancel
	2.6.5. Capture
	2.6.6. Refund
	2.6.7. Status
	2.6.8. Extended Status

	3. Payment process
	3.1. Using the One Page Checkout
	3.2. Using Webdirect

	4. Order API calls
	4.1. createRequest
	4.1.1. Request

	4.2. CreateRequest Afterpay & Klarna
	4.2.1. Request
	4.2.2. Response

	4.3. startRequest without a token
	4.3.1. Request
	4.3.2. Response

	4.4. startRequest with a token
	4.4.1. Request

	4.5. proceedRequest
	4.5.1. Request
	4.5.2. Response

	4.6. cancelRequest
	4.6.1. Request
	4.6.2. Response

	4.7. captureRequest
	4.7.1. Request
	4.7.2. Response

	4.8. refundRequest
	4.8.1. Request
	4.8.2. Response

	4.9. statusRequest
	4.9.1. Request
	4.9.2. Response

	4.10. statusExtendedRequest
	4.10.1. Request
	4.10.2. Response

	4.11. Changes in the Order API
	4.11.1. Request
	4.11.2. Response

	4.12. Example of an Update Url
	4.13. Determining whether an order is paid
	4.13.1. A calculated decision
	4.13.2. Direct Payment: Monitor <totalAcquirerApproved> equals <totalRegistered>.
	4.13.3. Delayed Payment: Monitor <totalShopperPending> and <totalAcquirerPending>
	4.13.4. Safest route: Monitor <TotalCaptured> equals <totalRegistered>.

	5. Backoffice configuration

